Executive Conference
4/5/2016

David Turpin
President & Executive Director
Agenda 2020 Technology Alliance
Agenda 2020 – A Unique Voice for the Industry

Mission: Promote the development of advanced manufacturing technologies that promise transformational impact on the paper and forest-based industries

- Member-funded 501(c)(3) organization
- Identify industry technology needs / Drive consensus on R&D priorities
 - 2010 Forest Products Industry Technology Roadmap
 - 2015 Detailed Roadmaps - NIST Advanced Manufacturing Technology Planning Grant
- Inform government agencies and universities about industry research needs
- Promote R&D programs funded in part by government
Vision

Roadmap Targets
- $1.5B in cost reduction
- > 200 Trillion BTU energy savings
- 480 Billion gallons water reduction
- $5 Billion new product sales
- Protect 380,000 jobs
Current Projects / Priorities

Member Company Priorities
- Process efficiency
- Sustainability – energy, water, products
- Fiber properties – virgin, recycled

Active Projects
- Press Section Modeling – HPC4Mfg
- Molecular Modeling of Potential Pulping Catalysts – USFS / FPL
- Teledyne Scientific – Novel Sacrificial Superhydrophilic Anti-fouling Coating - DOE Funded
- Georgia Tech, RBI – Robust Membranes
- High-Performance Architectured Surface Selective (HiPAS) Membranes – ORNL
- Cellulose Nanomaterials – Oral Toxicity Study - Vireo Advisors

Transforming the forest products industry through innovation
Reuse of Process Effluents

Goal
Reduce average water usage by half

Value
> $300mm, 45 TBTU, 480 Billion gallons

Strategy
- Identify target areas for reuse and establish water quality requirements
- Develop cost-effective, broadly applicable technical solutions to address contaminants that inhibit reuse
- Focus on Paper Machine Whitewater Reuse and Reuse of Biologically Treated Effluents

Priority Projects
- **Model development** – Develop predictive process and economic model to determine possible water reuse options
- **Removal of suspended solids 10-40 µm** – Develop processes to separate particles based on material properties other than size
- **Removal of dissolved organic and colloidal substances** – Evaluate technologies utilized in other industries
- **Removal of inorganic constituents** – Explore feasibility of chemical agglomeration and filtration, surface passivation, or both

Transforming the forest products industry through innovation
Next-Generation Pulping

Goal
Reduce total energy 25%. Increase yield 5 percentage points. Reduce BOD/COD

Value
$900 MM, 70 TBTU

Strategy
• Develop advanced pulping technologies to increase the fiber yield and strategies to keep the yield gains throughout the bleaching process

Priority Projects

• **Yield-protective pretreatment** - Develop an approach to stabilize carbohydrate end-groups toward primary peeling

• **Accelerate delignification** - Identify/evaluate catalysts or methods to activate lignin e.g. higher content of free phenolic hydroxyl groups, decrease in molecular weight of lignin prior to delignification

• **Improve O₂ delignification selectivity to enable higher-kappa** - Identify an inter-stage filtrate treatment process and/or activation chemistry to improve second-stage reactivity and selectivity

• **Complete delignification** - Determine the composition of the oxidation-resistant lignin. Identify co-oxidants that can work within the existing O₂ technology and/or alternative oxidation catalysts

Transforming the forest products industry through innovation
Black Liquor Concentration

<table>
<thead>
<tr>
<th>Goal</th>
<th>Develop a more energy-efficient method to remove water from kraft pulp mill black liquor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>$95 MM, 23 TBTU</td>
</tr>
</tbody>
</table>
| Strategy | • Overcome issues with membrane separation technology in current development projects: Sacrificial Coatings, Robust Membranes, HiPAS membranes
 • Develop more fundamental understanding of issues with commercially available membranes |

Priority Projects

- **Modeling permeate quality** – *Iterative process and economic model to define acceptable conditions for permeate use*
- **Screen existing membrane technology** – *Evaluation of existing commercial technologies for feasibility by membrane providers*
- **Conduct bench-scale membrane screening and research** - Test membranes and conduct research to understand issues
- **Develop a portable test skid to analyze and optimize membrane technology** – *Build skid mounted equipment with capability to test at mill sites*
- **Process simulation/modeling to predict stream composition**
Reduce Drying Energy

Goal: Increase dryness of paper webs entering dryer section by ~ 30% (from 45-55% up to 65%)

Value: $250 MM, 80 TBTU

Strategy:
- Develop a fundamental understanding of rewet and technologies to control or eliminate it
- Develop advanced fiber matrix to facilitate water release without impacting sheet strength and uniformity

Priority Projects:
- **Decoupling Strength and Water Removal** – Develop approaches to decouple strength and water retention through chemical bonding strategies or use of alternative fiber types and minerals
- **Modeling Rewet** - Develop general mathematical model describing water flow rate and direction in the complex 3-D porous media
- **Measuring Rewet** - Develop measurement techniques to visualize and quantify rewet under dynamic conditions
- **Adaptive Felt Materials** - Develop “adaptive” felt materials or structures
- **Unidirectional Membrane** - Identify or develop a membrane that will support preferential flow of water away from the fiber web
Transforming the forest products industry through innovation

Cellulose Nanomaterials

Goal
Facilitate broad range of commercial development through development of pre-competitive technologies

Strategy
- Develop production methods (focus on issues of drying and dewatering)
- Characterize morphology and properties
- Pre-competitive research to enable applications

Priority Projects
- **GRAS designation** - Conduct toxicological investigation to obtain FDA Generally Regarded As Safe designation
- **Dewatering/redispersion methods** – Investigate ways to modulate hydrophilicity, drainage rates, rheology; create temporary or reversible flocculation; explore alternative solvents
- **Drying/redispersion methods** – Explore drying technologies for nanomaterials via literature review and evaluations; explore chemical aids to prevent agglomeration/hysteresis
- Develop characterization standards
- **Facilitate application in high-volume composites** - Develop scalable dispersion technologies by investigating alternative modes to incorporate nanocellulose including surface functionalization
Roadmaps to Road Trips

Specific Destinations

Funding

Partners

RFPs

Hit the Road

Transforming the forest products industry through innovation
Agenda 2020 Members and Partners

<table>
<thead>
<tr>
<th>MEMBER COMPANIES</th>
<th>PARTNERS AND AFFILIATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Process</td>
<td>American Forest & Paper Association</td>
</tr>
<tr>
<td>Andritz</td>
<td>Bioenergy Deployment Consortium</td>
</tr>
<tr>
<td>Arborgen</td>
<td>TAPPI</td>
</tr>
<tr>
<td>Asten Johnson</td>
<td>NCASI</td>
</tr>
<tr>
<td>Georgia Pacific</td>
<td>NPT2</td>
</tr>
<tr>
<td>Imerys</td>
<td>U.S. Forest Service / Forest Products Laboratory</td>
</tr>
<tr>
<td>International Paper</td>
<td>U.S. Department of Energy / Oak Ridge National Lab</td>
</tr>
<tr>
<td>Kadant</td>
<td>Auburn University</td>
</tr>
<tr>
<td>KapStone Paper</td>
<td>Georgia Tech – Renewable Bioproducts Institute</td>
</tr>
<tr>
<td>WestRock</td>
<td>Georgia Southern University – Herty AMDC</td>
</tr>
<tr>
<td>Nalco</td>
<td>Miami University</td>
</tr>
<tr>
<td>Sappi</td>
<td>North Carolina State University</td>
</tr>
<tr>
<td>Solenis</td>
<td>SUNY - Environmental Science and Forestry</td>
</tr>
<tr>
<td>Southworth Co.</td>
<td>University of Maine</td>
</tr>
<tr>
<td>Verso Paper</td>
<td>University of Wisconsin - Stevens Point</td>
</tr>
<tr>
<td>Xerium Technologies</td>
<td>Virginia Commonwealth University</td>
</tr>
<tr>
<td>Voith</td>
<td>Western Michigan University</td>
</tr>
</tbody>
</table>

Transforming the forest products industry through innovation
David Turpin, President & Executive Director
Agenda 2020 Technology Alliance
david_turpin@agenda2020.org
740-649-2307